Chemical Names \& Formulas

Chapter 9

Quick Reminders (or brand new?)

- A compound is a chemical combination of two or more elements (like the pre-class ones).
- Subscripts indicate how many atoms of an element are present.
- $\mathrm{H}_{2} \mathrm{O}=2$ Hydrogen, 1 Oxygen
- $\mathrm{CO}_{2}=1$ Carbon, 2 Oxygen
- Note that subscripts only apply to the letter next to them (unless there are parentheses).

Quick Reminders (or brand new?)

- Chemists don't write ones.
- Na^{+}has a charge of $1+$.
- Cl^{-}has a charge of 1-.
- $\mathrm{K}_{2} \mathrm{~S}$ has one sulfur atom.

Quick Reminders (or brand new?)

- For elements whose symbols have two letters (or even three), only the first letter is capitalized.
- For example, Cesium is abbreviated Cs.
- If you write CS, another person might think it's a compound of Carbon (C) and Sulfur (S).

Review

- What is a cation?
- Which group of elements tend to form cations?
- What is an anion?
- Which group of elements tend to form anions?

Cations and Anions

- And since cations and anions attract one another...
- They form ionic bonds, making ionic compounds.

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive..?"

Need to Know Information

- What kind of elements are involved?
- Metal, nonmetal, or metalloid.
- How many elements are there?
- 2 - binary compound
- 3 - ternary compound (usually has a polyatomic ion)
- What kind of charge does it create?
- Positive, negative, or neutral.
- Are there polyatomic ions?

Predicting lonic Charges

Alkali - Group 1A: Lose 1 electron to form 1+ions

$$
\begin{array}{llll}
\mathbf{H}^{+} & \mathrm{Li}^{+} & \mathrm{Na}^{+} & \mathrm{K}^{+}
\end{array}
$$

1 1.00794																	
Li_{6941}^{3}												\square					
													$\underset{\substack{14 \\ \mathrm{Si} \\ 28.0855}}{ }$		${\underset{32}{16}}_{S_{32} .066}$	17 Cl 35.4527	$\begin{gathered} 18 \\ \mathrm{Ar} \\ 399.948 \end{gathered}$
	$\begin{gathered} 20 \\ \mathrm{Ca}_{40.078} \end{gathered}$				$\stackrel{24}{\mathrm{Cr}}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni}}$ 58.6934	$\begin{gathered} 29 \\ \mathrm{Cu}_{63.546} \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathrm{Ga} \\ 69.723 \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \\ \hline 72.61 \end{gathered}$		$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\underset{83.80}{36}$
$\begin{gathered} \hline 37 \\ \mathrm{Rb}_{854678} \\ \hline \end{gathered}$	$\begin{gathered} \hline 38 \\ \mathrm{Sr}_{87.62} \\ \hline \end{gathered}$	88.90585 Y	$\begin{gathered} { }^{40} \\ \mathrm{Zr} \\ 91.224 \end{gathered}$		$\begin{gathered} 42 \\ \mathrm{Mo} \\ 95.94 \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \text { (98) } \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$		${ }^{46}$ Pd 106.42			$\operatorname{In}_{114.818}^{49}$		$\begin{gathered} \hline 51 \\ \mathrm{Sb} \\ 121.760 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \mathrm{Te}_{127.60} \\ \hline \end{gathered}$	53 I 126.90447	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
		$\begin{gathered} \mathrm{La}_{138.9055}^{57} \end{gathered}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \end{gathered}$		$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \end{gathered}$	$\begin{array}{\|c\|} \hline 75 \\ \mathrm{Re} \\ 186.207 \end{array}$	$\begin{gathered} 76 \\ \text { OS } \\ 150.23 \end{gathered}$		$\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.078 \end{gathered}$		$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$		$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \end{gathered}$	Bi 208.58038	$\begin{gathered} 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} \hline 88 \\ \mathrm{Ra} \\ (226) \\ \hline \end{gathered}$	$\begin{gathered} 89 \\ \mathrm{Ac} \\ (227) \\ \hline \end{gathered}$	$\begin{array}{r} 104 \\ \mathrm{Rf} \\ (261) \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (265) \end{gathered}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & (262) \end{aligned}$		$\begin{gathered} \hline 109 \\ \mathrm{Mt} \\ (266) \\ \hline \end{gathered}$	$\begin{array}{r} 110 \\ (2099) \end{array}$	$\begin{array}{r} 111 \\ (272) \\ \hline \end{array}$	$\begin{aligned} & 112 \\ & (277) \\ & \hline \end{aligned}$		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{gathered} 116 \\ (289) \\ \hline \end{gathered}$		

Predicting Ionic Charges

Alkaline Earth - Group 2A: Loses 2 electrons to form 2+ ions

$\begin{array}{lllll}\mathrm{Be}^{2+} & \mathbf{M g}^{2+} & \mathrm{Ca}^{2+} & \mathrm{Sr}^{2+} & \mathrm{Ba}^{2+}\end{array}$

1 $\stackrel{1}{H}$ 1.00794 3	\downarrow																
$\begin{gathered} \mathrm{Li}_{6.941}^{3} \\ \hline \end{gathered}$												5 B 10.811					
												\qquad	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.0855 \\ \hline \end{gathered}$	15 P 3a973761	$\mathrm{S}_{32.066}^{16}$		$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.948 \\ \hline \end{gathered}$
	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.078 \end{aligned}$		$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.867 \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.9415 \end{gathered}$	$\underset{51.9961}{24}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni}_{58.0834}}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.546 \end{gathered}$	$\begin{aligned} & 30 \\ & 7 n \\ & 65.39 \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ 9.723 \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.61 \\ \hline \end{gathered}$		$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\underset{83.80}{36}$
$\begin{gathered} \hline 37 \\ \mathrm{Rb} \\ 854678 \\ \hline \end{gathered}$	$\begin{gathered} \hline 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$		$\begin{gathered} 4_{40} \\ \mathrm{Zr} \\ 91.224 \end{gathered}$		$\begin{gathered} 42 \\ \mathrm{Mo} \\ 95.94 \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \hline(98) \\ & \hline \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \\ \hline \end{gathered}$	\square	$\begin{gathered} 46 \\ \mathrm{Pd} \\ 106.42 \end{gathered}$		48 Cd 112.411	$\operatorname{In}_{114.818}^{49}$		$\begin{array}{\|c\|} \hline 51 \\ \mathrm{Sb} \\ 121.760 \\ \hline \end{array}$	$\begin{gathered} \hline 52 \\ \mathrm{Te} \\ 127.60 \\ \hline \end{gathered}$	53 I 126.90447	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
	56 Ba 137.327	138 L_{13}^{57}	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \\ \hline \end{gathered}$		$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \\ \hline \end{gathered}$		$\begin{gathered} \hline 76 \\ \text { OS } \\ 150.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ 192.217 \end{gathered}$			$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$		$\begin{array}{r} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \hline \end{array}$	83 Bi 208.58038	$\begin{gathered} 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (208) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \mathrm{Rn} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{~F}_{(223)} \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathrm{Ac} \\ (227) \end{gathered}$	$\begin{array}{r} 104 \\ \mathrm{Rf} \\ (261) \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (20.3) \\ \hline \end{gathered}$	$\begin{aligned} & 107 \\ & \text { Bh } \\ & (262) \end{aligned}$		$\begin{aligned} & \hline 109 \\ & \mathrm{Mt} \\ & (266) \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & (269) \\ & \hline \end{aligned}$	$\begin{gathered} 111 \\ (272) \\ \hline \end{gathered}$	$\begin{array}{r} 112 \\ (277) \\ \hline \end{array}$		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{gathered} 116 \\ (289) \\ \hline \end{gathered}$		

Predicting Ionic Charges

Group 3A: Loses 3

electrons to form 3+ions

1 H 1.00794 3												2					
Li_{6941}^{3}															$\stackrel{8}{\mathrm{O}}$		
													$\begin{gathered} \hline 14 \\ \mathrm{Si} \\ 28.0855 \\ \hline \end{gathered}$	15 P 3a973761	$\mathrm{S}_{32.066}^{16}$		$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.948 \\ \hline \end{gathered}$
	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.078 \end{aligned}$		$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.867 \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.9415 \end{gathered}$	$\underset{51.9961}{24}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni}_{58.0834}}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.546 \end{gathered}$	$\begin{aligned} & 30 \\ & 7 n \\ & 65.39 \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ 9.723 \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.61 \\ \hline \end{gathered}$		$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\underset{83.80}{36}$
$\begin{gathered} \hline 37 \\ \mathrm{Rb} \\ 854678 \\ \hline \end{gathered}$	$\begin{gathered} \hline 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$		${ }^{40}$ 7 Zr 91.224		$\begin{gathered} 42 \\ \mathrm{Mo} \\ 95.94 \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \hline(98) \\ & \hline \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \\ \hline \end{gathered}$		$\begin{gathered} 46 \\ \mathrm{Pd} \\ 106.42 \end{gathered}$		Cd_{18}^{48} 112.411	$\operatorname{In}_{114.818}^{49}$		$\begin{array}{\|c\|} \hline 51 \\ \mathrm{Sb} \\ 121.760 \\ \hline \end{array}$	$\begin{gathered} \hline 52 \\ \mathrm{Te} \\ 127.60 \\ \hline \end{gathered}$	53 I 126.90447	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
		\square	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \end{gathered}$		$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 75 \\ \mathrm{Re} \\ 186.207 \end{array}$	$\begin{gathered} \hline 76 \\ \text { OS } \\ 150.23 \end{gathered}$				$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$		$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \hline \end{gathered}$	83 Bi 208.58038	$\begin{gathered} 84 \\ \mathrm{PO}_{\mathrm{O}} \\ (208) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \mathrm{Rn} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ { }^{87} \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathrm{Ac} \\ (227) \\ \hline \end{gathered}$	$\begin{aligned} & 104 \\ & \mathrm{Rf} \\ & (261) \end{aligned}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (20.3) \\ \hline \end{gathered}$	$\begin{aligned} & 107 \\ & \text { Bh } \\ & (262) \end{aligned}$		$\begin{aligned} & \hline 109 \\ & \mathrm{Mt} \\ & (266) \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & (269) \\ & \hline \end{aligned}$	$\begin{gathered} 111 \\ (272) \\ \hline \end{gathered}$	$\begin{array}{r} 112 \\ (277) \\ \hline \end{array}$		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{gathered} 116 \\ (289) \\ \hline \end{gathered}$		

Predicting lonic Charges

Neither! Group 4A elements rarely form ions.

Group 4A: Lose 4
electrons or gain 4 electrons?

Predicting lonic Charges

N^{-}Nitride
P3- Phosphide
As ${ }^{3-}$ Arsenide

Group 5A: Gains 3 electrons to form 3 -ions

$\begin{gathered} \hline 1 \\ \mathrm{H} \\ 1.00794 \\ \hline \end{gathered}$																	
$\underset{6.941}{L^{3}}$																	
													$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.0858 \\ \hline \end{gathered}$	15 P $\mathbf{P} 97361$	$\begin{gathered} 16 \\ S \\ 32.066 \end{gathered}$		$\underset{39.948}{\mathrm{Ar}}$
	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.078 \end{gathered}$		$\begin{gathered} 22 \\ \mathrm{Ti}_{47.86} \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.9415 \end{gathered}$	$\stackrel{24}{\mathrm{Cr}}$		$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.845 \end{gathered}$		$\underset{58.6834}{28}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.546 \end{gathered}$	$\begin{aligned} & 30 \\ & 7 n \\ & 65.39 \end{aligned}$	$\begin{gathered} 31 \\ \text { Ga } \\ \omega 9.723 \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \\ 72.61 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 34 \\ & \mathrm{Se} \\ & 78.96 \\ & \hline \end{aligned}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\begin{aligned} & 366 \\ & \mathrm{Kr} \\ & 81.80 \end{aligned}$
$\begin{gathered} 37 \\ \mathrm{Rb}_{854678} \end{gathered}$	$\begin{gathered} \hline 38 \\ \mathrm{Sr}_{8} \\ 87.62 \\ \hline \end{gathered}$	39 Y .90585	$\begin{gathered} 4_{10} \\ \mathrm{Zr}^{91.224} \end{gathered}$		$\begin{gathered} 42 \\ \mathrm{Mo} \\ 95.94 \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{Tc} \\ & \hline(98) \\ & \hline \end{aligned}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$		$\begin{gathered} 46 \\ \mathrm{Pd} \\ 106.42 \end{gathered}$		48 $\mathrm{Cd}_{12.411}$	$\operatorname{In}_{114.818}^{49}$		51 $\mathrm{Sb}_{121.760}^{5}$ 8	$\begin{gathered} \hline 52 \\ \mathrm{Te} \\ 127.60 \\ \hline \end{gathered}$	53 I 126.90447	$\begin{array}{r} \hline 54 \\ \mathrm{Xe} \\ 131.29 \\ \hline \end{array}$
		${\underset{138.9055}{57}}^{\text {La }}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \\ \hline \end{gathered}$		$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \\ \hline \end{gathered}$		$\begin{gathered} 76 \\ \mathrm{OS} \\ 150.23 \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir}_{192.217} \end{gathered}$			$\begin{gathered} 80 \\ \mathrm{Hg}_{200.59} \end{gathered}$		$\begin{array}{r} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \hline \end{array}$	83 $208, ~ c g 038$ Bi	$\begin{gathered} 84 \\ \mathrm{P}_{\mathrm{O}} \\ (209) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \mathrm{Rn} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	88 Ra (226)	$\begin{gathered} 89 \\ \mathrm{Ac} \\ (227) \end{gathered}$	$\begin{array}{r} 104 \\ \mathrm{Rf} \\ (261) \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ (26 \mathrm{~g}) \end{gathered}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & (262) \end{aligned}$	108 Hs (265)	109 Mt (266)	$\begin{array}{r} 110 \\ (209) \\ \hline \end{array}$	$\begin{array}{r} 111 \\ (272) \\ \hline \end{array}$	$\begin{array}{r} 112 \\ (277) \\ \hline \end{array}$		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{gathered} 116 \\ (289) \\ \hline \end{gathered}$		

Predicting Ionic Charges

O^{2-} Oxide
 S $^{2-}$ Sulfide
 Se $^{2-} \quad$ Selenide
 Group 6A：Gains 2 electrons to form
 2－ions

，										，				\％	
										B		N	ह		Nic
${ }^{\text {magm }}$										\cdots	S	${ }^{\text {P }}$			
鰝	\％			5				\％	炒	${ }_{\text {ca }}$	$\stackrel{\circ}{\circ}$	2			${ }_{\text {kr }}^{\text {kr }}$
为 ${ }^{\text {chi }}$	\％	动	\％	T	${ }^{\text {R }}$	Ril	${ }_{\text {pid }}^{\text {Pd }}$	${ }^{\circ} \mathrm{A}$	cid	in	sn	st			
${ }_{\text {cs }}{ }^{\circ}{ }^{\circ}$	H	${ }_{\text {it }}$	${ }^{2}$	${ }^{\text {R }}$	\％	R	${ }^{\text {pi }}$	${ }^{\text {an }}$	${ }^{4}$	－	pn	${ }^{\text {B }}$			
			就	噳	年		1	0							

Predicting Ionic Charges

Halogens

F1- $^{-1}$ Fluoride
Group 7A: Gains 1 electron to form
Cl¹- Chloride Br^{1-} Bromide

${ }^{\text {H }}$	$\mathrm{Br}^{1-}$$\mathrm{I}^{1-}$		Bromide										
				Iodid									
							dos						
${ }^{\text {Rb }}$ St	y	${ }^{\circ} \mathrm{A}$ Nib	Mัo				${ }^{4} \mathrm{~A}$						
	La	${ }_{\text {\% }}^{\text {Ta }}$	\%	\%	${ }_{0}^{\circ} \mathrm{c}$	${ }_{\text {c }}$	hin	${ }^{\text {H2m }}$	II				

Predicting Ionic Charges

Group 8A: Stable Noble gases do not form ions!

$\begin{gathered} \stackrel{1}{H} \\ 1.00794 \end{gathered}$																	${ }_{4.002602}^{2}$
$\mathrm{L}_{6.941}^{3}$	$\begin{aligned} & 4 \\ & \mathrm{Be} \\ & 9.012182 \end{aligned}$											5 B 10.811	$\stackrel{6}{C}_{12.0107}$	N^{7} 14.00674	$\begin{gathered} 8 \\ \bigcirc_{15.9994}^{0} \end{gathered}$	9 F 18.998403	10 Ne 20.1797
$\begin{array}{\|c} \hline 11 \\ \mathrm{Na} \\ 22.989770 \end{array}$	$\begin{array}{\|c} 12 \\ \mathrm{M} \mathrm{~g}_{2} \\ \hline \end{array}$												$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.0855 \end{gathered}$	15 P 30973761	$\begin{gathered} 16 \\ S_{32.066} \end{gathered}$	$\stackrel{17}{C_{35.4527}}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.948 \\ \hline \end{gathered}$
K_{39}^{19}	C_{4}^{20}	$\begin{array}{\|c\|} \hline 21 \\ \mathrm{~S} \mathrm{C} \\ 44.955910 \end{array}$	$T_{47.867}^{22}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.9415 \end{gathered}$	${ }_{51.9961}^{24}$	25 Mn 54.938049	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.845 \end{gathered}$		$\stackrel{28}{\mathrm{Ni}}$	$\mathrm{Cu}_{63.546}^{29}$	$\begin{gathered} 30 \\ Z n \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ca } \\ 69.723 \end{gathered}$	$\stackrel{32}{\text { Ge }}$	$\begin{gathered} 33 \\ \mathrm{AS} \\ 74.92160 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \end{gathered}$	$\mathrm{Kr}_{81.80}^{36}$
$\begin{aligned} & 37 \\ & \mathrm{Rb} \\ & 85.4678 \end{aligned}$	$\stackrel{38}{\mathrm{Si}}$	39 Y 88.90585	$\begin{gathered} 40 \\ 7 r \\ 91.224 \end{gathered}$	41 Nb 92.90638	$\begin{gathered} 42 \\ \mathrm{MO} \\ 95.94 \end{gathered}$	${ }_{(98)}^{43}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.07 \end{gathered}$	45 Rh 102.50550	$\begin{aligned} & 46 \\ & \mathrm{Pd} \\ & 106.42 \end{aligned}$	$\begin{gathered} 47 \\ \mathrm{~A} \mathrm{O} \\ 107.8682 \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Cd}_{112.411} \end{gathered}$	$\operatorname{In}_{114.818}^{49}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ 118.710 \end{gathered}$	$\begin{gathered} 51 \\ \mathrm{Sb} \\ 121.760 \end{gathered}$	$\begin{gathered} 52 \\ \text { Te } \\ 127.60 \end{gathered}$		$\begin{gathered} \hline 54 \\ \mathrm{Xe} \\ 131.29 \end{gathered}$
$\begin{gathered} 55 \\ \mathrm{CS} \\ 132.90545 \end{gathered}$	56 Ba 137.327	$\begin{gathered} \hline 57 \\ 138.9055 \end{gathered}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.49 \end{gathered}$	73 Ta 180.9479	$\begin{gathered} 74 \\ \mathrm{~W} \\ 183.84 \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{Re} \\ 186.207 \end{gathered}$	$\begin{gathered} \hline 76 \\ \mathrm{OS} \\ 150.23 \end{gathered}$	$\begin{gathered} 77 \\ \operatorname{Ir} \\ 192.217 \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.078 \end{gathered}$	79 Au 196.96655	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$	81 Tl 204.3833	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \end{gathered}$	83 Bi 208.98038	$\begin{gathered} 84 \\ \mathrm{PO} \\ (209) \end{gathered}$	$\begin{gathered} 85 \\ \mathrm{At} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ \Omega 22) \end{gathered}$
$\begin{aligned} & 87 \\ & \mathrm{~F} \mathrm{r} 23 \end{aligned}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \\ \mathrm{AC} \\ (227) \end{gathered}$	$\begin{array}{r} 104 \\ \mathrm{Rf} \\ (261) \end{array}$	$\begin{gathered} 105 \\ \mathrm{Db} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{SO} \\ (265) \end{gathered}$	$\begin{aligned} & 107 \\ & \mathrm{Bh} \\ & (262) \end{aligned}$	$\begin{gathered} 108 \\ \mathrm{HS} \\ (265) \end{gathered}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \\ & (266) \end{aligned}$	$\begin{gathered} 110 \\ (2099) \end{gathered}$	$\begin{gathered} 111 \\ (272) \\ \hline \end{gathered}$	$\begin{array}{r} 112 \\ (277) \\ \hline \end{array}$		$\begin{gathered} 114 \\ (289) \\ (287) \end{gathered}$		$\begin{gathered} 116 \\ (289) \end{gathered}$		

Predicting Ionic Charges

Groups 1B-8B: Many transition elements

 hàve more than one possible oxidation $\operatorname{Iron}(\mathrm{II})=\mathrm{Fe}^{2+}$
Common Multivalent Elements

- Copper (Cu) - either 1 or 2 valence electrons. - Copper (I) or Copper (II) -1^{+}or 2^{+}
- Nickel (Ni) - either 2 or 3 valence electrons. - Nickel (II) or Nickel (III) -2^{+}or 3^{+}
- Iron (Fe) - either 2 or 3 valence electrons. - Iron (II) or Iron (III) - 2^{+}or 3^{+}
- Lead (Pb) - either 2 or 4 valence electrons. - Lead (II) or Lead (IV) -2^{+}or 4^{+}
- Tin (Sn) - either 2 or 4 valence electrons. ${ }^{\square}$ Tin (II) or Tin (IV) -2^{+}or 4^{+}
- Mercury (Hg) - either 1 or 2 valence electrons.
- Mercury (I) or Mercury (II) - 1^{+}or 2^{+}

Predicting Ionic Charges

Groups 1B-8B: Some transition elements
have only one possible oxidation state.

Zinc $=\mathrm{Zn}^{2+}$

$\stackrel{1}{\mathrm{H}}$	
${ }^{3}$	4
Li	Be
6941	9.012182
11	12
Na	Mg
22.989770	24.3050
19	20
K	Ca
39,.983	40.078
37	${ }^{38}$
Rb	Sr
85.4678	87.62
55	56
Cs	Ba
13290545	137.327
87	${ }^{88}$
Fr	Ra
(223)	(226)

Silver $=\mathrm{Ag}^{+}$
Nickel $=\mathrm{Ni}^{2+}$
(227) $\quad \underset{(261)}{R 1}$
(262)

Binary Ionic Compounds

- What does binary mean?
- Two
- Contains 2 elements
- What is an ionic compound?
- Formed between a metal and a nonmetal

\section*{Binary Ionic Compou

 \section*{Example

 \section*{Example

 Potassium and Fluorine}}

- Elements to Formulas
- Identify cation/anion (with charges)
- Roman numerals for transition \& other multivalent metals!

Cation - K ${ }^{+}$

Anion- F^{-}

- Put the cation symbol first, then the anion

$$
\mathbf{K}^{+} \mathbf{F}^{-}
$$

- Drop \& Cross to balance charges

KF

Binary Ionic Compounds Practice

- Calcium and Bromine
- Copper(II) and Oxygen
- Lithium and Sulfur
- Mercury(I) and Oxygen
- Aluminum and Chlorine
- Lead(IV) and Sulfur
- Potassium and Sulfur
- Beryllium and Bromine
- Cobalt(II) and Phosphorus
- Tin(IV) and Chlorine

Binary Ionic Compounds

- Formulas to Names

Example

- Write the name of the cation (Roman numerals with multivalent transition metals)

\mathbf{K}^{+}- Potassium

- Write the name of the anion
- Drop the ending
- Add -ide

F^{-}- Fluorine becomes Fluoride

- Combine cation then anion

Potassium fluoride

Binary Ionic Compounds Practice

- CaBr_{2}
- $\mathrm{Hg}_{2} \mathrm{O}$
- NaCl
- CoCl_{2}
- AlCl_{3}
- $\mathrm{K}_{2} \mathrm{~S}$
- CrCl_{2}
- $\mathrm{Na}_{3} \mathrm{P}$

Binary Ionic Compounde with Transition
 Example
 Iron(III) and Chlorine
 - Elements to Formulas

- Identify cation/anion (with charges)

$$
\text { Cation }-\mathrm{Fe}^{3^{+}} \quad \text { Anion- } \mathbf{C l}^{-}
$$

- Put the cation symbol first, then the anion

$$
\mathrm{Fe}^{3+} \mathrm{Cl}^{-}
$$

- Drop \& Cross to balance charges
FeCl_{3}

Binary Ionic Compounds Practice

- Copper(II) and Oxygen
- Mercury(I) and Oxygen
- Lead(IV) and Sulfur
- Cobalt(II) and Chlorine
- Tin(IV) and Chlorine
- Cobalt(III) and Iodine
- Silver and Bromine
- Chromium(II) and Chlorine

Binary Ionic Compounds

with Transition Metals Example FeCl_{3}

- Formulas to Names
- "Uncross" to find charge
- Write the name of the cation with roman numeral

$$
\mathbf{F e}^{3^{+}}-\operatorname{Iron}(\mathrm{III})
$$

- Write the name of the anion
- Drop the ending
- Add -ide

$\mathrm{Cl}^{-}-$Chlorine becomes Chloride

- Combine cation then anion

Iron(III) Chloride

Binary Ionic Compounds Practice

- $\mathrm{Hg}_{2} \mathrm{O}$
- CuO
- $\mathrm{Pb}_{2} \mathrm{~S}_{4}$
- CoCl_{2}
- SnCl_{4}
- CoI_{3}
- AgBr
- CrCl_{2}

Compounds with Pol

Example

Sodium and Carbonate

- Elements/Polyatomics
- Identify cation/anion (with charges)
- Identify the polyatomic ion (with charges)

Cation - $\mathbf{N a}^{1+}$

Negative Polyatomic - $\mathrm{CO}_{3}{ }^{2-}$

- Put the cation/positive polyatomic symbol first, then the anion/negative polyatomic

$$
\mathbf{N a}^{1+} \mathbf{C O}_{3}{ }^{2-}
$$

- Drop \& Cross to balance charges. Put polyatomics in () if more than one.

$\mathrm{Na}_{2} \mathrm{CO}_{3}$

Compounds with Polyatomics Practice

- Ammonium and Oxygen
- Potassium and Nitrate
- Lead(IV) and Dichromate
- Calcium and Hydroxide
- Lithium and Sulfate
- Calcium and Permanganate
- Sodium and Chlorate
- Magnesium and Phosphate

Compounds with Polyatc

- Formulas to Names

Example

 $\mathrm{Na}_{2} \mathrm{CO}_{3}$- Look for the polyatomic - it can be $1^{\text {st }}$ or $2^{\text {nd }}$
- "Uncross" to find charge
$\mathbf{N a}^{\mathbf{1 +}}$ - Sodium
$\mathrm{CO}_{3}{ }^{2-}$ - Carbonate
- Write the name
- If the polyatomic is $1^{\text {st }}$, end the anion with -ide
- If the polyatomic is $2^{\text {nd }}$, cation is written as normal and polyatomic is normal

Sodium Carbonate

Compounds with Polyatomics Practice

- $\mathrm{NH}_{4} \mathrm{Cl}$
- KNO_{3}
- $\mathrm{Ca}(\mathrm{OH})_{2}$
- $\mathrm{Pb}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{2}$
- $\mathrm{Li}_{2} \mathrm{SO}_{4}$
- $\mathrm{Ca}\left(\mathrm{MnO}_{4}\right)_{2}$
- NaClO_{3}
$\cdot \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Name or Write a Formula for the following examples...

- NaOH
- $\mathrm{Ag}_{2} \mathrm{SO}_{3}$
- Beryllium Sulfate
- Tin(II) Iodide
- Aluminum Cyanide
- Zinc Hydroxide
- $\mathrm{Co}_{3} \mathrm{~N}_{2}$
- $\mathrm{Ga}\left(\mathrm{NO}_{2}\right)_{3}$
- $\mathrm{Mg}_{3} \mathrm{P}_{2}$
- Beryllium Acetate
- $\mathrm{Fe}_{3} \mathrm{~N}_{2}$
- Silver Sulfide

Naming Acids

- Acids contain 1 or more H atoms
- H is the first element listed!

Example HCl

- If anion ends with -ide (halogens).
- Acid name begins with hydro-

hydrochloric acid

- Stem of anion ends with -ic
- End the name by writing acid
- For polyatomics...
- -ite endings become -ous, followed by acid

Example $\mathrm{H}_{2} \mathrm{SO}_{4}$

- -ate endings become -ic, followed by acid

$\mathrm{SO}_{4}{ }^{2-}$ - Sulfate

Naming Acids Practice

- HCl
- Cl- would be chloride, so it's hydrochloric acid.
- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- $\mathrm{SO}_{4}{ }^{2-}$ would be sulfate, so it's sulfuric acid.
- HClO_{2}
- $\mathrm{ClO}_{2}{ }^{-}$would be chlorite, so it's chlorous acid.

Writing Acid Formulas

- Hydrogen forms a $1+$ charge in acids. Example - first element listed! Nitric acid
- Identify the anion (halogen or polyatomic) - Write the formula with charge
- Drop \& Cross
$\mathrm{H}^{+} \mathrm{NO}_{3}{ }^{-}$
-ic means an-ate polyatomic
HNO_{3}

Writing Acid Formulas

- Bromic Acid
- HBrO_{3}
- Hydroiodic Acid
- HI
- Carbonous Acid
- $\mathrm{H}_{2} \mathrm{CO}_{2}$
- Nitrous Acid
- HNO_{2}

Overall Acid Practice

- $\mathrm{H}_{2} \mathrm{CO}_{3}$
- Hydroiodic acid
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
- HBr
- Chloric acid
- $\mathrm{H}_{2} \mathrm{CO}_{3}$
- Hydrofluoric acid
- $\mathrm{H}_{3} \mathrm{PO}_{3}$

Binary Molecular Compounds

- Review
- Binary = 2 elements
- What is an molecular compound?
- Composed of 2 nonmetals
- Composed of molecules, not ions...no charges!

Binary Molecular Compounds

- Prefixes are used to indicate how many atoms of an element are present in the compound.

Prefix	Meaning
Mono -	1
Di -	2
Tri -	3
Tetra -	4
Penta -	5
Hexa -	6
Hepta -	7
Octa -	8
Nona -	9
Deca -	10

Naming Binary Molecular Compounds

- Confirm that the two elements are nonmetals

Example CO

- Name the $1^{\text {st }}$ element
- If only 1 of the $1^{\text {st }}$ element omit prefix

C - carbon

- If more than 1 of the $1^{\text {st }}$ element use prefix
- Name the $2^{\text {nd }}$ element (the more EN element)
- Always use a prefix
- Add -ide ending

O-monoxide
carbon monoxide

Molecular Naming Practice

Compound Formula

Compound Name
$\mathrm{N}_{2} \mathrm{O}_{4}$ SO_{3}
NO
NO_{2}
$\mathrm{As}_{2} \mathrm{O}_{5}$
$\mathbf{P C l}_{3}$
CCl_{4}
SeF_{6}

Molecular Formula Practice

Compound Formula

Compound Name
Dinitrogen Triiodide Diphosphorus pentoxide
Dinitrogen monoxide Silicon dioxide
Carbon tetrabromide
Sulfur dioxide
Phosphorus pentabromide
Iodine trichloride

Overall Molecular Compounds Practice

- PCl_{3}
- Diphosphorus trioxide
- SF_{6}
- Carbon dioxide
- $\mathrm{C}_{2} \mathrm{H}_{6}$
- CCl_{4}
- Dichlorine octoxide
- $\mathrm{N}_{2} \mathrm{O}$

