Chemical Names & Formulas Chapter 9 # Quick Reminders (or brand new?) - A compound is a chemical combination of two or more elements (like the pre-class ones). - **Subscripts** indicate how many atoms of an element are present. - H₂O = 2 Hydrogen, 1 Oxygen - CO₂ = 1 Carbon, 2 Oxygen - Note that subscripts only apply to the letter next to them (unless there are parentheses). # Quick Reminders (or brand new?) - Chemists don't write ones. - Na+ has a charge of 1+. - Cl- has a charge of 1-. - K₂S has <u>one</u> sulfur atom. # Quick Reminders (or brand new?) - For elements whose symbols have two letters (or even three), only the first letter is capitalized. - For example, Cesium is abbreviated Cs. - If you write CS, another person might think it's a compound of Carbon (C) and Sulfur (S). #### Review - What is a cation? - Which group of elements tend to form cations? - What is an anion? - Which group of elements tend to form anions? ### **Cations and Anions** - And since cations and anions attract one another... - They form ionic bonds, making ionic compounds. "Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive..?" #### Need to Know Information - What kind of elements are involved? - Metal, nonmetal, or metalloid. - How many elements are there? - 2 binary compound - 3 ternary compound (usually has a polyatomic ion) - What kind of charge does it create? - Positive, negative, or neutral. - Are there <u>polyatomic ions</u>? <u>Alkali - Group 1A</u>: Lose 1 electron to form 1+ ions H⁺ Li⁺ Na⁺ K⁺ | 1
H
1.00794 | | _ | | | | | | | | | | | | | | | He
4.002602 | |-----------------------|---------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|---|-----------------------|---------------------|-----------------------|-------------------|----------------------|---------------------| | Li
6.941 | 4
Be
9.012182 | | | | | | | | | | | B
10.811 | C
12.0107 | 7
N
14.00674 | 8
O
15.9994 | 9
F
18.9984032 | 10
Ne
20.1797 | | 11
Na
22.989770 | 12
Mg
24.3050 | | | | | | | | | | | 13
Al
26.981538 | 14
Si
28.0855 | 15
P
30.973761 | 16
S
32.066 | 17
Cl
35.4527 | 18
Ar
39.948 | | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.955910 | Ti
47.867 | V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.938049 | Fe
55.845 | Co
58.933200 | Ni
58.6934 | Cu
63.546 | $\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$ | 31
Ga
69.723 | Ge
72.61 | AS
74.92160 | 34
Se
78.96 | Br
79.904 | Kr
83.80 | | 37
Rb
85.4678 | 38
Sr
87.62 | Y
88.90585 | 2r
2r
91.224 | 41
Nb
92.90638 | 42
Mo
95.94 | Tc
(98) | | 45
Rh
102.90550 | 46
Pd
106.42 | 47
Ag
197.8682 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | Sb
121.760 | Te
127.60 | 53
I
126.90447 | Xe
131.29 | | Cs
132.90545 | 56
Ba
137.327 | 57
La
138.9055 | 72
Hf
178.49 | 73
Ta
180.9479 | 74
W
183.84 | 75
Re
186.207 | 76
Os
190.23 | 77
Ir
192.217 | 78
Pt
195.078 | 79
Au
196.96655 | Hg
200.59 | 81
T1
204.3833 | Pb
207.2 | 83
Bi
208.98038 | PO
(209) | At
(210) | Rn
(222) | | Fr
(223) | 88
Ra
(226) | Ac
(227) | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(263) | 107
Bh
(262) | 108
Hs
(265) | 109
Mt
(266) | (269) | (272) | (277) | | (289)
(287) | | 116
(289) | | | Alkaline Earth - Group 2A: Loses 2 electrons to form 2+ ions Neither! Group 4A elements rarely form ions. Group 4A: Lose 4 electrons or gain 4 electrons? | 1
H
1.00794 | | _ | | | | | | | | | | | | _ | | | He
4.002602 | |-----------------------|---------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|---|-----------------------|-----------------------|-----------------------|-------------------|----------------------|---------------------| | Li
6.941 | 4
Be
9.012182 | | | | | | | | | | | B
10.811 | C
12.0107 | 7
N
14.00674 | 8
O
15.9994 | 9
F
18.9984032 | 10
Ne
20.1797 | | 11
Na
22.989770 | 12
Mg
24.3050 | | | | | | | | | | | 13
Al
26.981538 | 14
Si
28.0855 | 15
P
0.973761 | 16
S
32.066 | 17
Cl
35.4527 | 18
Ar
39.948 | | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.955910 | Ti
47.867 | V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.938049 | Fe
55.845 | CO
58.933200 | 28
Ni
58.6934 | Cu
63.546 | $\operatorname*{Zn}_{\scriptscriptstyle{65.39}}^{\scriptscriptstyle{30}}$ | 31
Ga
69.723 | 32
Ge
72.61 | 33
As
74.92160 | 34
Se
78.96 | 35
Br
79.904 | Kr
83.80 | | 37
Rb
85.4678 | 38
Sr
87.62 | Y
88.90585 | 40
Zr
91.224 | 41
Nb
92.90638 | 42
Mo
95.94 | Tc
(98) | 44
Ru
101.07 | 45
Rh
102.90550 | 46
Pd
106.42 | 47
Ag
197.8682 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.760 | Te
127.60 | 53
I
126.90447 | Xe
131.29 | | CS
132.90545 | 56
Ba
137.327 | 57
La
138.9055 | 72
Hf
178.49 | 73
Ta
180.9479 | 74
W
183.84 | 75
Re
186.207 | 76
Os
190.23 | 77
Ir
192.217 | 78
Pt
195.078 | 79
Au
196.96655 | 80
Hg
200.59 | 81
T1
204.3833 | Pb
207.2 | 83
Bi
208.98038 | PO
(209) | 85
At
(210) | Rn
(222) | | Fr
(223) | 88
Ra
(226) | Ac
(227) | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(263) | 107
Bh
(262) | 108
Hs
(265) | 109
Mt
(266) | 110
(269) | (272) | (277) | | 114
(289)
(287) | | 116
(289) | | | N³- Nitride **P3-** Phosphide **As³⁻** Arsenide Group 5A: Gains 3 electrons to form 3- ions | 1
H
1.00794 | | | | | | | | | | | | | | | | | He
4.002602 | |-----------------------|---------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|--|-----------------------|---------------------|-----------------------|---|-----------------------|---------------------|----------------------|-------------------|----------------------|---------------------| | Li
6941 | 4
Be
9.012182 | | | | | | | | | | | B
10.811 | 6
C
12.0107 | 7
N
14.00674 | 8
O
15.9994 | 9
F
18.9984032 | 10
Ne
20.1797 | | 11
Na
22.989770 | 12
Mg
24.3050 | | | | | | | | | | | 13
Al
26.981538 | 14
Si
28.0855 | 15
P
30.973761 | 16
S
32.066 | 17
Cl
35.4527 | 18
Ar
39.948 | | 19
K
39.0983 | Ca
40.078 | 21
Sc
44.955910 | Ti
47.867 | V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.938049 | ²⁶
Fe
^{55,845} | CO
58.933200 | 28
Ni
58.6934 | Cu
63.546 | $\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$ | 31
Ga
69.723 | Ge
72.61 | 33
As
74.92160 | 34
Se
78.96 | Br
79.904 | Kr
83.80 | | Rb
85.4678 | 38
Sr
87.62 | Y
88.90585 | 40
Zr
91.224 | 41
Nb
92.90638 | 42
Mo
95.94 | Tc
(98) | 44
Ru
101.07 | 45
Rh
102.90550 | 46
Pd
106.42 | 47
Ag
197.8682 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.760 | Te
127.60 | 53
I
126.90447 | Xe
131.29 | | CS
132.90545 | 56
Ba
137.327 | 57
La
138.9055 | 72
Hf
178.49 | 73
Ta
180.9479 | 74
W
183.84 | 75
Re
186.207 | 76
Os
190.23 | 77
Ir
192.217 | 78
Pt
195.078 | 79
Au
196.96655 | 80
Hg
200.59 | T1
204.3833 | Pb
207.2 | Bi
208 98038 | PO
(209) | At
(210) | Rn
(222) | | Fr
(223) | 88
Ra
(226) | 89
Ac
(227) | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(263) | 107
Bh
(262) | 108
Hs
(265) | 109
Mt
(266) | (269) | (272) | (277) | | (289)
(287) | | 116
(289) | | | O²- Oxide S²⁻ Sulfide Se²⁻ Selenide Group 6A: Gains 2 electrons to form 2-ions | 1
H
1.00794 | | | | | | | | | | | | | | | | | He
4.002602 | |-----------------------|---------------------|-----------------------|--------------------|----------------------|---------------------|-----------------------|--------------------|-----------------------|---------------------|-----------------------|---|-----------------------|-----------------------|-----------------------|-------------------|----------------------|---------------------| | Li
6.941 | 4
Be
9.012182 | | | | | | | | | | | B
10.811 | C
12.0107 | 7
N
14.00674 | O
15.9994 | 9
F
18.9984032 | 10
Ne
20.1797 | | 11
Na
22.989770 | 12
Mg
24.3050 | | | | | | | | | | | 13
Al
26.981538 | 14
Si
28.0855 | 15
P
30.973761 | 16
S
32.866 | 17
Cl
35.4527 | 18
Ar
39.948 | | 19
K
39.0983 | 20
Ca
40.078 | 21
Sc
44.955910 | Ti
47.867 | V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.938049 | Fe
55.845 | Co
58.933200 | Ni
58.6934 | Cu
63.546 | $\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$ | 31
Ga
69.723 | Ge
72.61 | 33
As
74.92.160 | 34
Se
78.96 | 35
Br
79.904 | Kr
83.80 | | 37
Rb
85.4678 | 38
Sr
87.62 | Y
88.90585 | 2r
2r
91.224 | 41
Nb
92.90638 | 42
Mo
95.94 | Tc
(98) | | 45
Rh
102.90550 | 46
Pd
106.42 | 47
Ag
197.8682 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.760 | Te
127.60 | 53
I
126.90447 | Xe
131.29 | | CS
132.90545 | Ba
137.327 | 57
La
138.9055 | 72
Hf
178.49 | 73
Ta
180.9479 | 74
W
183.84 | Re
186.207 | 76
Os
190.23 | 77
Ir
192.217 | 78
Pt
195.078 | 79
Au
196.96655 | Hg
200.59 | 81
T1
204.3833 | Pb
207.2 | 83
Bi
208.98038 | PO
(209) | 85
At
(210) | Rn
(222) | | Fr
(223) | 88
Ra
(226) | Ac
(227) | 104
Rf
(261) | Db
(262) | 106
Sg
(263) | 107
Bh
(262) | HS
(265) | 109
Mt
(266) | (269) | (272) | (277) | | 114
(289)
(287) | | (289) | | | **F¹-** Fluoride Cl¹⁻ Chloride Halogens Group 7A: Gains 1 electron to form 1- ions | 1
H
1.00794 | | | B | r1- |] | Bro | m | ide | | | | | | | | | He
4.002602 | |--|-------------------------------------|-----------------------|--------------------|----------------------|-------------------------|-----------------------|--------------------|-----------------------------|---------------------|----------------------|---------------------|---------------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------| | 3
Li
6941
11
Na | 4
Be
9.012182
12
M.c. | | Ι | 1- |] | lod | ide | 9 | | | | 5
B
10.811
13
Al | 6
C
12.0107
14
Si | 7
N
14.00674
15
D | 8
O
15.9994
16
S | 9
F
18.998403
17 | 10
Ne
20.1797
18 | | 1Na
22.989770
19
K
39.0983 | Mg
24.3050
20
Ca
40.078 | 21
Sc
44.955910 | Ti
47.867 | 23
V
50.9415 | 24
Cr
51.9961 | 25
Mn
54.938049 | 26
Fe
55.845 | Co
58.933200 | 28
Ni
58.6934 | 29
Cu
63.546 | 30
Zn
65.39 | A1
26.981538
31
Ga
69.723 | | AS
74.92160 | 32.066
34
Se
78.96 | 35.4527
35
Br
79.904 | Ar
39.948
Kr
83.80 | | 37
Rb
85.4678 | 38
Sr
87.62 | 39
Y
88.90585 | 40
Zr
91.224 | 41
Nb
92.90638 | 42
Mo
95.94
74 | 43
Tc
(98) | 44
Ru
101.07 | 45
Rh
102.90550
77 | 46
Pd
106.42 | 47
Ag
107.8682 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | 51
Sb
121.760 | Te
127.60 | 53
I
126.9044
85 | 54
Xe
131.29 | | Cs
132.90545 | Ba
137.327 | La
138.9055 | Hf
178.49 | Ta
180.9479 | W
183.84 | Re
186.207 | Os
190.23 | Ir
192.217 | Pt
195.078 | Au
196.96655 | Hg
200.59 | T1
204.3833 | Pb
207.2 | Bi
208.98038 | Po | At | Rn
(222) | | Fr
(223) | 88
Ra
(226) | Ac
(227) | 104
Rf
(261) | Db
(262) | 106
Sg
(263) | Bh
(262) | HS
(265) | 109
Mt
(266) | (269) | (272) | (277) | | (289)
(287) | | (289) | | | Group 8A: Stable Noble gases do not form ions! | 1
H
1.00794 | | | | | | | | | | | | | | | | | He
4.002602 | |-----------------------|---------------------|-----------------------|--------------------|----------------------|--------------------|-----------------------|--------------------|--------------------|---------------------|-----------------------|---|-----------------------|---------------------|-----------------------|-------------------|---------------------|---------------------| | Li
6.941 | 4
Be
9.012182 | | | | | | | | | | | B
10.811 | C
12.0107 | 7
N
14.00674 | 8
O
15.9994 | 9
F
18.998403 | 10
Ne
20.1797 | | 11
Na
22.989770 | 12
Mg
24.3050 | | | | | | | | | | | 13
Al
26.981538 | 14
Si
28.0855 | 15
P
30.973761 | 16
S
32.866 | 17
Cl
35.4527 | 18
Ar
39.948 | | 19
K
39.0983 | | 21
Sc
44.955910 | Ti
47.867 | V
50.9415 | | 25
Mn
54.938049 | | Co
58.933200 | Ni
58.6934 | Cu
63.546 | $\operatorname*{Zn}_{\scriptscriptstyle{65.39}}^{\scriptscriptstyle{30}}$ | 31
Ga
⊛.723 | Ge
72.61 | 33
As
74.92160 | 34
Se
78.96 | 35
Br
79.904 | 36
Kr
83.80 | | Rb
85.4678 | 38
Sr
87.62 | Y
88.90585 | Zr
91.224 | 41
Nb
92.90638 | Mo
95.94 | Tc
(98) | | Rh
102.90550 | 46
Pd
106.42 | 47
Ag
107.8682 | 48
Cd
112.411 | 49
In
114.818 | 50
Sn
118.710 | Sb
121.760 | Te
127.60 | 53
I
126.9044 | Xe
131.29 | | 55
Cs
132.90545 | 56
Ba
137.327 | 57
La
138.9055 | 72
Hf
178.49 | 73
Ta
180.9479 | 74
W
183.84 | 75
Re
186.207 | 76
Os
190.23 | Ir
192.217 | 78
Pt
195.078 | 79
Au
196.96655 | Hg
200.59 | 81
T1
204.3833 | Pb
207.2 | 83
Bi
208.98038 | PO
(209) | 85
At
(210) | Rn
(222) | | Fr
(223) | 88
Ra
(226) | Ac
(227) | 104
Rf
(261) | Db
(262) | 106
Sg
(263) | Bh
(262) | 108
Hs
(265) | 109
Mt
(266) | (269) | (272) | (277) | | (289)
(287) | | 116
(289) | | | Groups 1B-8B: Many transition elements have more than one possible oxidation state. $Iron(II) = Fe^{2+}$ $Iron(III) = Fe^{3+}$ Н Не 1.00794 4.002602 Be Ne 14,00674 15.9994 6.941 9.01218210.811 12.0107 18.9984032 20.1797 14 15 16 18 Mg Na Αl Si Р Ar 22.98977 24.3050 5.981538 28.0855 30.97376 32.066 35,4527 39.948 31 Τi Ñi V Fe Cr Zn Ca CuGa Ge AsSe BrKr 55.845 8.933200 40.078 4.955910 47.867 50.9415 51.9961 63.546 69.72372.6174.92160 79.904 83.80 54.9380 Rb Sr Zr Nb Μо Tс Ru Rh Pd Ag 107.8682 Cd In Sn Sb Te Xe 88.90585 91.224 92.90638 106.42 112.411 114.818 127.60 85,4678 101.07 102.90550 118.710121.760 126.90447 131.29 81 82 Hf W Ρt T1Pb Βi Ba La Ta Re Os Ir НΩ Po Αt Rn Αu 132,90545 200.59 137.327 138,9055 178.49 180.9479 183.84 186.207 190.23 192.217 195.078 196.96653 204.3833 207.2 208.98038 (209)(210)110 111 114 116 Rf Db Hs Μt Fr Ra Βh Ac(289)(289) #### Common Multivalent Elements - Copper (Cu) either 1 or 2 valence electrons. - □ Copper (I) or Copper (II) − 1⁺ or 2⁺ - Nickel (Ni) either 2 or 3 valence electrons. - □ Nickel (II) or Nickel (III) 2+ or 3+ - Iron (Fe) either 2 or 3 valence electrons. - □ Iron (II) or Iron (III) 2+ or 3+ - Lead (Pb) either 2 or 4 valence electrons. - Lead (II) or Lead (IV) − 2⁺ or 4⁺ - Tin (Sn) either 2 or 4 valence electrons. - □ Tin (II) or Tin (IV) 2+ or 4+ - Mercury (Hg) either 1 or 2 valence electrons. - □ Mercury (I) or Mercury (II) − 1⁺ or 2⁺ Groups 1B-8B: Some transition elements have only one possible oxidation state. $Zinc = Zn^{2+}$ $Silver = Ag^+$ Nickel= Ni²⁺ Gold= Au³⁺ Не 1.00794 4.002602 Be Ne 10.811 15.9994 9.01218212.0107 14,00674 18.9984032 20.1797 18 Mg Na Αl Si Ar 24.3050 28.0855 30.97376 35,4527 39.948 Ni Ni Τi V Mn Fe Cr CuGa Ge AsBrKr Ca Se 58.933200 63.546 40.078 47.867 54.938049 69.72372.6174.92.160 Ag 107.8682 Rb SrZr Nb Μо Tс Ru Rh Pd In Sn Sb Te Xe 88.90585 91.224 92.90638 85,4678 102.90550 114.818 118.710121.760 127.60 131.29 Hf W Ρt T1Pb Ba La Ta Re Os Ir Нδ Βi Po Rn 132.90543 137.327 138,9055 178.49 180.9479 183.84 186.207 190.23 192.217 195.078 196.9665 204.3833 207.2 208.98038 (210)110 114 116 Rf Db Hs Mt Fr Ra Βh Ac(289)(289) # Binary Ionic Compounds - What does binary mean? - Two - Contains 2 elements - What is an ionic compound? - Formed between a metal and a nonmetal # Binary Ionic Compou # **Example Potassium and Fluorine** - Elements to Formulas - Identify cation/anion (with charges) - Roman numerals for transition & other multivalent metals! Cation – K⁺ Anion-F Put the cation symbol first, then the anion K+ F- Drop & Cross to balance charges **KF** ## Binary Ionic Compounds Practice - Calcium and Bromine - Copper(II) and Oxygen - Lithium and Sulfur - Mercury(I) and Oxygen - Aluminum and Chlorine - Lead(IV) and Sulfur - Potassium and Sulfur - Beryllium and Bromine - Cobalt(II) and Phosphorus - Tin(IV) and Chlorine # Binary Ionic Compounds Example KF - Formulas to Names - Write the name of the cation (Roman numerals with multivalent transition metals) K⁺- Potassium - Write the name of the anion - Drop the ending - · Add **-ide** F-- Fluorine becomes Fluoride Combine cation then anion **Potassium fluoride** # Binary Ionic Compounds Practice - CaBr₂ - Hg_2O - NaCl - CoCl₂ - AlCl₃ - K_2S - CrCl₂ - Na_3P # Binary Ionic Compounds with Transition # Example Iron(III) and Chlorine - Elements to Formulas - Identify cation/anion (with charges) Cation – Fe³⁺ Anion-Cl- Put the cation symbol first, then the anion Fe³⁺ Cl⁻ Drop & Cross to balance charges FeCl₃ ### Binary Ionic Compounds Practice - Copper(II) and Oxygen - Mercury(I) and Oxygen - Lead(IV) and Sulfur - Cobalt(II) and Chlorine - Tin(IV) and Chlorine - Cobalt(III) and Iodine - Silver and Bromine - Chromium(II) and Chlorine # Binary Ionic Compounds with Transition Metals Example FeCl₃ - Formulas to Names - "Uncross" to find charge - Write the name of the cation with roman numeral Fe³⁺- Iron(III) - Write the name of the anion - Drop the ending - Add **-ide** Cl⁻– Chlorine becomes Chloride Combine cation then anion Iron(III) Chloride # Binary Ionic Compounds Practice - Hg₂O - CuO - Pb₂S₄ - CoCl₂ - SnCl₄ - CoI₃ - AgBr - CrCl₂ # Compounds with Pol # Example Sodium and Carbonate - Elements/Polyatomics - Identify cation/anion (with charges) - Identify the polyatomic ion (with charges) Cation – Na¹⁺ **Negative Polyatomic – CO₃²⁻** Put the cation/positive polyatomic symbol first, then the anion/negative polyatomic $Na^{1+}CO_3^{2-}$ Drop & Cross to balance charges. Put polyatomics in () if more than one. Na₂CO₃ ### Compounds with Polyatomics Practice - Ammonium and Oxygen - Potassium and Nitrate - Lead(IV) and Dichromate - Calcium and Hydroxide - Lithium and Sulfate - Calcium and Permanganate - Sodium and Chlorate - Magnesium and Phosphate # Compounds with Polyate Example Na₂CO₃ - Formulas to Names - Look for the polyatomic it can be 1st or 2nd - "Uncross" to find charge Na¹⁺ – Sodium CO₃²⁻ – Carbonate - Write the name - If the polyatomic is 1st, end the anion with **-ide** - If the polyatomic is 2nd, cation is written as normal and polyatomic is normal **Sodium Carbonate** ### Compounds with Polyatomics Practice - NH₄Cl - KNO_3 - Ca(OH)₂ - Pb(Cr₂O₇)₂ - Li₂SO₄ - $Ca(MnO_4)_2$ - NaClO₃ - $Mg_3(PO_4)_2$ #### Name or Write a Formula for the following examples... NaOH • Ag_2SO_3 Beryllium Sulfate • Mg_3P_2 Tin(II) Iodide Beryllium Acetate Aluminum Cyanide • Fe₃N₂ Zinc Hydroxide • $Ga(NO_2)_3$ \bullet Co₃N₂ Silver Sulfide # Naming Acids - Acids contain 1 or more H atoms - H is the first element listed! Example HCl - If anion ends with -ide (halogens). - Acid name begins with hydro- - Stem of anion ends with -ic - End the name by writing acid - For polyatomics... - -ite endings become -ous, followed by acid - -ate endings become -ic, followed by acid hydrochloric acid Example H₂SO₄ SO₄²⁻ - Sulfate sulfuric acid # Naming Acids Practice - HCl - Cl⁻ would be chloride, so it's <u>hydrochloric acid</u>. - H_2SO_4 - □ SO₄²⁻ would be sulf<u>ate</u>, so it's sulfur<u>ic acid</u>. - HClO₂ - ClO₂ would be chlor<u>ite</u>, so it's chlor<u>ous acid</u>. # Writing Acid Formulas - Hydrogen forms a 1+ charge in acids. - first element listed! Example Nitric acid - Identify the anion (halogen or polyatomic) - Write the formula with charge - Drop & Cross H⁺ NO₃ ⁻ - ic means an -ate polyatomic HNO₃ ## Writing Acid Formulas - Bromic Acid - HBrO₃ - Hydroiodic Acid - HI - Carbonous Acid - H₂CO₂ - Nitrous Acid - " HNO₂ ### Overall Acid Practice - H_2CO_3 - Hydroiodic acid - $HC_2H_3O_2$ - HBr - Chloric acid - H_2CO_3 - Hydrofluoric acid - H_3PO_3 # Binary Molecular Compounds - Review - Binary = 2 elements - What is an molecular compound? - Composed of 2 nonmetals - Composed of molecules, not ions...no charges! ## Binary Molecular Compounds • **Prefixes** are used to indicate how many atoms of an element are present in the compound. | Prefix | Meaning | |---------|---------| | Mono – | 1 | | Di – | 2 | | Tri – | 3 | | Tetra – | 4 | | Penta – | 5 | | Hexa – | 6 | | Hepta – | 7 | | Octa – | 8 | | Nona – | 9 | | Deca – | 10 | ### Naming Binary Molecular Compounds Confirm that the two elements are nonmetals Example CO - Name the 1st element - If only 1 of the 1st element omit prefix C - carbon - If more than 1 of the 1st element use prefix - Name the 2nd element (the more EN element) - Always use a prefix - Add -ide ending O – monoxide carbon monoxide # Molecular Naming Practice | Compound Formula | Compound Name | |--------------------|---------------| | N_2O_4 | | | \mathbf{SO}_3 | | | NO | | | NO_2 | | | $\mathbf{As_2O_5}$ | | | PCl_3 | | | CCl ₄ | | | SeF ₆ | | ### Molecular Formula Practice | Compound Formula | Compound Name | |------------------|-------------------------| | | Dinitrogen Triiodide | | | Diphosphorus pentoxide | | | Dinitrogen monoxide | | | Silicon dioxide | | | Carbon tetrabromide | | | Sulfur dioxide | | | Phosphorus pentabromide | | | Iodine trichloride | ### Overall Molecular Compounds Practice - PCl₃ - Diphosphorus trioxide - SF₆ - Carbon dioxide - $\cdot C_2H_6$ - CCl₄ - Dichlorine octoxide - N_2O